Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroscience ; 535: 203-217, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37949310

RESUMO

Multiple sclerosis (MS) is a complex autoimmune and neurodegenerative disorder that affects the central nervous system (CNS). It is characterized by a heterogeneous disease course involving demyelination and inflammation. In this study, we utilized two distinct animal models, cuprizone (CPZ)-induced demyelination and experimental autoimmune encephalomyelitis (EAE), to replicate various aspects of the disease. We aimed to investigate the differential CNS responses by examining the proteomic profiles of EAE mice during the peak disease (15 days post-induction) and cuprizone-fed mice during the acute phase (38 days). Specifically, we focused on two different regions of the CNS: the dorsal cortex (Cx) and the entire spinal cord (SC). Our findings revealed varied glial, synaptic, dendritic, mitochondrial, and inflammatory responses within these regions for each model. Notably, we identified a single protein, Orosomucoid-1 (Orm1), also known as Alpha-1-acid glycoprotein 1 (AGP1), that consistently exhibited alterations in both models and regions. This study provides insights into the similarities and differences in the responses of these regions in two distinct demyelinating models.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Camundongos , Orosomucoide/efeitos adversos , Cuprizona/toxicidade , Proteômica , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
2.
Aging (Albany NY) ; 15(9): 3295-3330, 2023 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-37179123

RESUMO

AIMS: (Phospho)proteomics of old-aged subjects without cognitive or behavioral symptoms, and without AD-neuropathological changes and lacking any other neurodegenerative alteration will increase understanding about the physiological state of human brain aging without associate neurological deficits and neuropathological lesions. METHODS: (Phospho)proteomics using conventional label-free- and SWATH-MS (Sequential window acquisition of all theoretical fragment ion spectra mass spectrometry) has been assessed in the frontal cortex (FC) of individuals without NFTs, senile plaques (SPs) and age-related co-morbidities classified by age (years) in four groups; group 1 (young, 30-44); group 2 (middle-aged: MA, 45-52); group 3 (early-elderly, 64-70); and group 4 (late-elderly, 75-85). RESULTS: Protein levels and deregulated protein phosphorylation linked to similar biological terms/functions, but involving different individual proteins, are found in FC with age. The modified expression occurs in cytoskeleton proteins, membranes, synapses, vesicles, myelin, membrane transport and ion channels, DNA and RNA metabolism, ubiquitin-proteasome-system (UPS), kinases and phosphatases, fatty acid metabolism, and mitochondria. Dysregulated phosphoproteins are associated with the cytoskeleton, including microfilaments, actin-binding proteins, intermediate filaments of neurons and glial cells, and microtubules; membrane proteins, synapses, and dense core vesicles; kinases and phosphatases; proteins linked to DNA and RNA; members of the UPS; GTPase regulation; inflammation; and lipid metabolism. Noteworthy, protein levels of large clusters of hierarchically-related protein expression levels are stable until 70. However, protein levels of components of cell membranes, vesicles and synapses, RNA modulation, and cellular structures (including tau and tubulin filaments) are markedly altered from the age of 75. Similarly, marked modifications occur in the larger phosphoprotein clusters involving cytoskeleton and neuronal structures, membrane stabilization, and kinase regulation in the late elderly. CONCLUSIONS: Present findings may increase understanding of human brain proteostasis modifications in the elderly in the subpopulation of individuals not having AD neuropathological change and any other neurodegenerative change in any telencephalon region.


Assuntos
Doença de Alzheimer , Doenças do Sistema Nervoso , Idoso , Humanos , Pessoa de Meia-Idade , Doença de Alzheimer/metabolismo , Citoesqueleto/metabolismo , Encéfalo/metabolismo , Neurônios/metabolismo , Doenças do Sistema Nervoso/metabolismo , Monoéster Fosfórico Hidrolases , Proteínas tau/metabolismo
3.
J Pers Med ; 11(6)2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34204996

RESUMO

The most common form of mixed dementia (MixD) is constituted by abnormal protein deposits associated with Alzheimer's disease (AD) that coexist with vascular disease. Although olfactory dysfunction is considered a clinical sign of AD-related dementias, little is known about the impact of this sensorial impairment in MixD at the molecular level. To address this gap in knowledge, we assessed olfactory bulb (OB) proteome-wide expression in MixD subjects (n = 6) respect to neurologically intact controls (n = 7). Around 9% of the quantified proteins were differentially expressed, pinpointing aberrant proteostasis involved in synaptic transmission, nucleoside monophosphate and carbohydrate metabolism, and neuron projection regeneration. In addition, network-driven proteomics revealed a modulation in cell-survival related pathways such as ERK, AKT, and the PDK1-PKC axis. Part of the differential OB protein set was not specific of MixD, also being deregulated across different tauopathies, synucleinopathies, and tardopathies. However, the comparative functional analysis of OB proteome data between MixD and pure AD pathologies deciphered commonalities and differences between both related phenotypes. Finally, olfactory proteomics allowed to propose serum Prolow-density lipoprotein receptor-related protein 1 (LRP1) as a candidate marker to differentiate AD from MixD phenotypes.

4.
Ann Biomed Eng ; 49(2): 746-756, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32918104

RESUMO

Imaging of small laboratory animals in clinical MRI scanners is feasible but challenging. Compared with dedicated preclinical systems, clinical scanners have relatively low B0 field (1.5-3.0 T) and gradient strength (40-60 mT/m). This work explored the use of wireless inductively coupled coils (ICCs) combined with appropriate pulse sequence parameters to overcome these two drawbacks, with a special emphasis on the optimization of the coil passive detuning circuit for this application. A Bengal rose photothrombotic stroke model was used to induce cortical infarction in rats and mice. Animals were imaged in a 3T scanner using T2 and T1-weighted sequences. In all animals, the ICCs allowed acquisition of high-quality images of the infarcted brain at acute and chronic stages. Images obtained with the ICCs showed a substantial increase in SNR compared to clinical coils (by factors of 6 in the rat brain and 16-17 in the mouse brain), and the absence of wires made the animal preparation workflow straightforward.


Assuntos
Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/instrumentação , Acidente Vascular Cerebral/diagnóstico por imagem , Animais , Desenho de Equipamento , Feminino , Masculino , Camundongos Endogâmicos C57BL , Ratos Sprague-Dawley
5.
Clin Cancer Res ; 27(6): 1807-1820, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33376098

RESUMO

PURPOSE: Atypical teratoid/rhabdoid tumors (AT/RT) and central nervous system primitive neuroectodermal tumors (CNS-PNET) are pediatric brain tumors with poor survival and life-long negative side effects. Here, the aim was to characterize the efficacy and safety of the oncolytic adenovirus, Delta-24-RGD, which selectively replicates in and kills tumor cells. EXPERIMENTAL DESIGN: Delta-24-RGD determinants for infection and replication were evaluated in patient expression datasets. Viral replication and cytotoxicity were assessed in vitro in a battery of CNS-PNET and AT/RT cell lines. In vivo, efficacy was determined in different orthotopic mouse models, including early and established tumor models, a disseminated AT/RT lesion model, and immunocompetent humanized mouse models (hCD34+-NSG-SGM3). RESULTS: Delta-24-RGD infected and replicated efficiently in all the cell lines tested. In addition, the virus induced dose-dependent cytotoxicity [IC50 value below 1 plaque-forming unit (PFU)/cell] and the release of immunogenic markers. In vivo, a single intratumoral Delta-24-RGD injection (107 or 108 PFU) significantly increased survival and led to long-term survival in AT/RT and PNET models. Delta-24-RGD hindered the dissemination of AT/RTs and increased survival, leading to 70% of long-term survivors. Of relevance, viral administration to established tumor masses (30 days after engraftment) showed therapeutic benefit. In humanized immunocompetent models, Delta-24-RGD significantly extended the survival of mice bearing AT/RTs or PNETs (ranging from 11 to 27 days) and did not display any toxicity associated with inflammation. Immunophenotyping of Delta-24-RGD-treated tumors revealed increased CD8+ T-cell infiltration. CONCLUSIONS: Delta-24-RGD is a feasible therapeutic option for AT/RTs and CNS-PNETs. This work constitutes the basis for potential translation to the clinical setting.


Assuntos
Neoplasias do Sistema Nervoso Central/terapia , Tumores Neuroectodérmicos Primitivos/terapia , Oligopeptídeos/genética , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética , Tumor Rabdoide/terapia , Teratoma/terapia , Animais , Apoptose , Proliferação de Células , Neoplasias do Sistema Nervoso Central/imunologia , Neoplasias do Sistema Nervoso Central/mortalidade , Neoplasias do Sistema Nervoso Central/patologia , Feminino , Humanos , Imunidade Celular , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Tumores Neuroectodérmicos Primitivos/imunologia , Tumores Neuroectodérmicos Primitivos/mortalidade , Tumores Neuroectodérmicos Primitivos/patologia , Tumor Rabdoide/imunologia , Tumor Rabdoide/mortalidade , Tumor Rabdoide/patologia , Teratoma/imunologia , Teratoma/mortalidade , Teratoma/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Biomolecules ; 10(8)2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32824740

RESUMO

Monoacylglycerol lipase inhibition (MAGL) has emerged as an interesting therapeutic target for neurodegenerative disease treatment due to its ability to modulate the endocannabinoid system and to prevent the production of proinflammatory mediators. To obtain a beneficial response, it is necessary to understand how this inhibition affects the neuron-glia crosstalk and neuron viability. In this study, the effect of MAGL inhibition by KML29 was evaluated in two types of rat cortical primary cultures; mixed cultures, including neuron and glial cells, and neuron-enriched cultures. The risk of neuronal death was estimated by longitudinal survival analysis. The spontaneous neuronal risk of death in culture was higher in the absence of glial cells, a process that was enhanced by KML29 addition. In contrast, neuronal survival was not compromised by MAGL inhibition in the presence of glial cells. Blockade of cannabinoid type 2 (CB2) receptors expressed mainly by microglial cells did not affect the spontaneous neuronal death risk but decreased neuronal survival when KML29 was added. Modulation of cannabinoid type 1 (CB1) receptors did not affect neuronal survival. Our results show that neuron-glia interactions are essential for neuronal survival. CB2 receptors play a key role in these protective interactions when neurons are exposed to toxic conditions.


Assuntos
Benzodioxóis/efeitos adversos , Neuroglia/citologia , Neurônios/citologia , Piperidinas/efeitos adversos , Receptor CB2 de Canabinoide/metabolismo , Animais , Comunicação Celular , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Monoacilglicerol Lipases/antagonistas & inibidores , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Cultura Primária de Células , Ratos
7.
Neurobiol Dis ; 137: 104781, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31991248

RESUMO

Alpha-synuclein (aSyn) protein levels are sufficient to drive Parkinson's disease (PD) and other synucleinopathies. Despite the biomedical/therapeutic potential of aSyn protein regulation, little is known about mechanisms that limit/control aSyn levels. Here, we investigate the role of a post-translational modification, N-terminal acetylation, in aSyn neurotoxicity. N-terminal acetylation occurs in all aSyn molecules and has been proposed to determine its lipid binding and aggregation capacities; however, its effect in aSyn stability/neurotoxicity has not been evaluated. We generated N-terminal mutants that alter or block physiological aSyn N-terminal acetylation in wild-type or pathological mutant E46K aSyn versions and confirmed N-terminal acetylation status by mass spectrometry. By optical pulse-labeling in living primary neurons we documented a reduced half-life and accumulation of aSyn N-terminal mutants. To analyze the effect of N-terminal acetylation mutants in neuronal toxicity we took advantage of a neuronal model where aSyn toxicity was scored by longitudinal survival analysis. Salient features of aSyn neurotoxicity were previously investigated with this approach. aSyn-dependent neuronal death was recapitulated either by higher aSyn protein levels in the case of WT aSyn, or by the combined effect of protein levels and enhanced neurotoxicity conveyed by the E46K mutation. aSyn N-terminal mutations decreased E46K aSyn-dependent neuronal death both by reducing protein levels and, importantly, by reducing the intrinsic E46K aSyn toxicity, being the D2P mutant the least toxic. Together, our results illustrate that the N-terminus determines, most likely through its acetylation, aSyn protein levels and toxicity, identifying this modification as a potential therapeutic target.


Assuntos
Neurônios/metabolismo , Doença de Parkinson/genética , Agregação Patológica de Proteínas/metabolismo , alfa-Sinucleína/metabolismo , Acetilação , Morte Celular/genética , Humanos , Mutação/genética , Doença de Parkinson/metabolismo , Agregação Patológica de Proteínas/genética , Processamento de Proteína Pós-Traducional/genética , Estabilidade Proteica
8.
J Clin Invest ; 129(12): 5086-5088, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31710309

RESUMO

Tumor-induced immunosuppression is a common obstacle for cancer treatment. Adrenergic signaling triggered by chronic stress participates in the creation of an immunosuppressive microenvironment by promoting myeloid-derived suppressor cell (MDSC) proliferation and activation. In this issue of the JCI, Mohammadpour et al. elegantly delve into the mechanisms underlying MDSC contribution to tumor development. They used in vitro and in vivo mouse models to demonstrate that chronic stress results in MDSC accumulation, survival, and immune-inhibitory activity. Of therapeutic relevance, the authors showed that propranolol, a commonly prescribed ß-blocker, can reduce MDSC immunosuppression and enhance the effect of other cancer therapies.


Assuntos
Células Supressoras Mieloides/imunologia , Neoplasias , Adrenérgicos , Animais , Terapia de Imunossupressão , Camundongos , Células Mieloides/imunologia , Receptores Adrenérgicos beta 2 , Microambiente Tumoral
9.
Proc Natl Acad Sci U S A ; 114(39): E8274-E8283, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28900007

RESUMO

α-Synuclein (aSyn) is the main driver of neurodegenerative diseases known as "synucleinopathies," but the mechanisms underlying this toxicity remain poorly understood. To investigate aSyn toxic mechanisms, we have developed a primary neuronal model in which a longitudinal survival analysis can be performed by following the overexpression of fluorescently tagged WT or pathologically mutant aSyn constructs. Most aSyn mutations linked to neurodegenerative disease hindered neuronal survival in this model; of these mutations, the E46K mutation proved to be the most toxic. While E46K induced robust PLK2-dependent aSyn phosphorylation at serine 129, inhibiting this phosphorylation did not alleviate aSyn toxicity, strongly suggesting that this pathological hallmark of synucleinopathies is an epiphenomenon. Optical pulse-chase experiments with Dendra2-tagged aSyn versions indicated that the E46K mutation does not alter aSyn protein turnover. Moreover, since the mutation did not promote overt aSyn aggregation, we conclude that E46K toxicity was driven by soluble species. Finally, we developed an assay to assess whether neurons expressing E46K aSyn affect the survival of neighboring control neurons. Although we identified a minor non-cell-autonomous component spatially restricted to proximal neurons, most E46K aSyn toxicity was cell autonomous. Thus, we have been able to recapitulate the toxicity of soluble aSyn species at a stage preceding aggregation, detecting non-cell-autonomous toxicity and evaluating how some of the main aSyn hallmarks are related to neuronal survival.


Assuntos
Mutação de Sentido Incorreto , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Agregação Patológica de Proteínas/metabolismo , alfa-Sinucleína/metabolismo , Substituição de Aminoácidos , Animais , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Neurônios/patologia , Fosforilação , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/patologia , Ratos , Ratos Sprague-Dawley , alfa-Sinucleína/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...